首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   800篇
  免费   50篇
  2021年   10篇
  2020年   6篇
  2019年   6篇
  2018年   9篇
  2017年   11篇
  2016年   25篇
  2015年   33篇
  2014年   30篇
  2013年   55篇
  2012年   63篇
  2011年   54篇
  2010年   41篇
  2009年   32篇
  2008年   50篇
  2007年   49篇
  2006年   47篇
  2005年   27篇
  2004年   33篇
  2003年   37篇
  2002年   28篇
  2001年   7篇
  2000年   7篇
  1999年   10篇
  1998年   12篇
  1997年   8篇
  1996年   11篇
  1995年   8篇
  1994年   8篇
  1993年   4篇
  1992年   7篇
  1991年   7篇
  1990年   10篇
  1989年   5篇
  1988年   6篇
  1987年   3篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   6篇
  1981年   12篇
  1980年   3篇
  1979年   4篇
  1978年   6篇
  1977年   6篇
  1976年   3篇
  1974年   8篇
  1973年   4篇
  1971年   3篇
  1968年   2篇
  1956年   2篇
排序方式: 共有850条查询结果,搜索用时 15 毫秒
51.
DsbA from Escherichia coli is the most oxidizing member of the thiol-disulfide oxidoreductase family (E(o)' = -122 mV) and is required for efficient disulfide bond formation in the periplasm. The reactivity of the catalytic disulfide bond (Cys(30)-Pro(31)-His(32)-Cys(33)) is primarily due to an extremely low pK(a) value (3.4) of Cys(30), which is stabilized by the partial positive dipole charge of the active-site helix alpha1 (residues 30-37). We have randomized all non-cysteine residues of helix alpha1 (residues 31, 32, and 34-37) and found that two-thirds of the resulting variants complement DsbA deficiency in a dsbA deletion strain. Sequencing of 98 variants revealed a large number of non-conservative replacements in active variants, even at well conserved positions. This indicates that tertiary structure context strongly determines alpha-helical secondary structure formation of the randomized sequence. A subset of active and inactive variants was further characterized. All these variants were more reducing than wild type DsbA, but the redox potentials of active variants did not drop below -210 mV. All inactive variants had redox potentials lower than -210 mV, although some of the inactive proteins were still re-oxidized by DsbB. This demonstrates that efficient oxidation of substrate polypeptides is the crucial property of DsbA in vivo.  相似文献   
52.
Pathways followed by ricin and Shiga toxin into cells   总被引:21,自引:5,他引:16  
The plant toxin ricin and the bacterial toxin Shiga toxin belong to a group of protein toxins that inhibit protein synthesis in cells enzymatically after entry into the cytosol. Ricin and Shiga toxin, which both have an enzymatically active moiety that inactivates ribosomes and a moiety that binds to cell surface receptors, enter the cytosol after binding to the cell surface, endocytosis by different mechanisms, and retrograde transport to the Golgi apparatus and the endoplasmic reticulum (ER). The toxins can be used to investigate the various transport steps involved, both the endocytic mechanisms as well as pathways for retrograde transport to the ER. Recent studies show that not only do several endocytic mechanisms exist in the same cell, but they are not equally sensitive to removal of cholesterol. New data have revealed that there is also more than one pathway leading from endosomes to the Golgi apparatus and retrogradely from the Golgi to the ER. Trafficking of protein toxins along these pathways will be discussed in the present article.  相似文献   
53.
Angiogenesis is an essential component of skeletal development and VEGF signaling plays an important if not pivotal role in this process. Previous attempts to examine the roles of VEGF in vivo have been largely unsuccessful because deletion of even one VEGF allele leads to embryonic lethality before skeletal development is initiated. The availability of mice expressing only the VEGF120 isoform (which do survive to term) has offered an opportunity to explore the function of VEGF during embryonic skeletal development. Our study of these mice provides new in vivo evidence for multiple important roles of VEGF in both endochondral and intramembranous bone formation, as well as some insights into isoform-specific functions. There are two key differences in vascularization of developing bones between wild-type and VEGF(120/120) mice. VEGF(120/120) mice have not only a delayed recruitment of blood vessels into the perichondrium but also show delayed invasion of vessels into the primary ossification center, demonstrating a significant role of VEGF at both an early and late stage of cartilage vascularization. These findings are the basis for a two-step model of VEGF-controlled vascularization of the developing skeleton, a hypothesis that is supported by the new finding that VEGF is expressed robustly in the perichondrium and surrounding tissue of cartilage templates of future bones well before blood vessels appear in these regions. We also describe new in vivo evidence for a possible role of VEGF in chondrocyte maturation, and document that VEGF has a direct role in regulating osteoblastic activity based on in vivo evidence and organ culture experiments.  相似文献   
54.
Previous work with model transgenic plants has demonstrated that cellular accumulation of mannitol can alleviate abiotic stress. Here, we show that ectopic expression of the mtlD gene for the biosynthesis of mannitol in wheat improves tolerance to water stress and salinity. Wheat (Triticum aestivum L. cv Bobwhite) was transformed with the mtlD gene of Escherichia coli. Tolerance to water stress and salinity was evaluated using calli and T(2) plants transformed with (+mtlD) or without (-mtlD) mtlD. Calli were exposed to -1.0 MPa of polyethylene glycol 8,000 or 100 mM NaCl. T(2) plants were stressed by withholding water or by adding 150 mM NaCl to the nutrient medium. Fresh weight of -mtlD calli was reduced by 40% in the presence of polyethylene glycol and 37% under NaCl stress. Growth of +mtlD calli was not affected by stress. In -mtlD plants, fresh weight, dry weight, plant height, and flag leaf length were reduced by 70%, 56%, 40%, and 45% compared with 40%, 8%, 18%, and 29%, respectively, in +mtlD plants. Salt stress reduced shoot fresh weight, dry weight, plant height, and flag leaf length by 77%, 73%, 25%, and 36% in -mtlD plants, respectively, compared with 50%, 30%, 12%, and 20% in +mtlD plants. However, the amount of mannitol accumulated in the callus and mature fifth leaf (1.7-3.7 micromol g(-1) fresh weight in the callus and 0.6-2.0 micromol g(-1) fresh weight in the leaf) was too small to protect against stress through osmotic adjustment. We conclude that the improved growth performance of mannitol-accumulating calli and mature leaves was due to other stress-protective functions of mannitol, although this study cannot rule out possible osmotic effects in growing regions of the plant.  相似文献   
55.
The carbohydrate binding preferences of the Galalpha3Galbeta4 GlcNAc-binding lectins from Marasmius oreades and Euonymus europaeus were examined by binding to glycosphingolipids on thin-layer chromatograms and in microtiter wells. The M. oreades lectin bound to Galalpha3-terminated glycosphingolipids with a preference for type 2 chains. The B6 type 2 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) was preferred over the B5 glycosphingolipid (Galalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), suggesting that the alpha2-linked Fuc is accommodated in the carbohydrate binding site, providing additional interactions. The lectin from E. europaeus had broader binding specificity. The B6 type 2 glycosphingolipid was the best ligand also for this lectin, but binding to the B6 type 1 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer) was also obtained. Furthermore, the H5 type 2 glycosphingolipid (Fucalpha2Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), devoid of a terminal alpha3-linked Gal, was preferred over the the B5 glycosphingolipid, demonstrating a significant contribution to the binding affinity by the alpha2-linked Fuc. The more tolerant nature of the lectin from E. europaeus was also demonstrated by the binding of this lectin, but not the M. oreades lectin, to the x2 glycosphingolipid (GalNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer. The A6 type 2 glycosphingolipid (GalNAcalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GalNAcalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1-Cer were not recognized by the lectins despite the interaction with B6 type 2 glycosphingolipid and the B5 glycosphingolipid. These observations are explained by the absolute requirement of a free hydroxyl in the 2-position of Galalpha3 and that the E. europaea lectin can accommodate a GlcNAc acetamido moiety close to this position by reorienting the terminal sugar, whereas the M. oreades lectin cannot.  相似文献   
56.
57.
58.
59.
Seedlings of open-pollinated Picea abies families from Norwegian and Central European parent trees standing at three sites in Norway were tested for timing of bud set at the end of the first growth season together with seedlings from control provenances producing seeds at their geographical origin. The parental origins were confirmed with a maternally inherited mitochondrial marker that distinguishes trees of the Northern European range from those of the Central European range. The seedlings from the families of Central European mother trees producing seeds in Norway had on average a bud set more similar to the families of local Norwegian origin producing seeds at the same site than the provenance of the same Central European origin. It is argued that the rapid change in this adaptive trait from one generation to the next can be explained by recent research results demonstrating that day length and temperature conditions during embryo formation and maturation can influence the phenotypic performance of seedlings in Norway spruce. This effect may influence the fitness of naturally regenerated plants produced in plantations of Central European trees in Norway.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号